首页> 外文期刊>Neural processing letters >Finite-Time Stability and Its Application for Solving Time-Varying Sylvester Equation by Recurrent Neural Network
【24h】

Finite-Time Stability and Its Application for Solving Time-Varying Sylvester Equation by Recurrent Neural Network

机译:有限时间稳定性及其在递归神经网络求解时变西尔维斯特方程中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates finite-time stability and its application for solving time-varying Sylvester equation by recurrent neural network. Firstly, a new finite-time stability criterion is given and a less conservative upper bound of the convergence time is also derived. Secondly, a sign-bi-power activation function with a linear term is presented for the recurrent neural network. The estimation of the upper bound of the convergence time is more less conservative. Thirdly, it is proposed a tunable activation function with three tunable positive parameters for the recurrent neural network. These parameters are not only helpful to reduce conservatism of the upper bound of the convergence time, accelerate convergence but also reduce sensitivity to additive noise. The effectiveness of our methods is shown by both theoretical analysis and numerical simulations.
机译:本文研究了有限时间稳定性及其在递归神经网络求解时变Sylvester方程中的应用。首先,给出了一个新的有限时间稳定性准则,并导出了收敛时间较不保守的上限。其次,针对递归神经网络提出了具有线性项的符号双幂激活函数。收敛时间上限的估计更为保守。第三,针对递归神经网络提出了具有三个可调正参数的可调激活函数。这些参数不仅有助于减少收敛时间上限的保守性,加速收敛,还有助于降低对加性噪声的敏感度。理论分析和数值模拟均显示了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号