首页> 外文期刊>IEEE Transactions on Neural Networks >Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign
【24h】

Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign

机译:神经模糊硬件的实现问题:走向硬件/软件代码

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an annotated overview of existing hardware implementations of artificial neural and fuzzy systems and points out limitations, advantages, and drawbacks of analog, digital, pulse stream (spiking), and other implementation techniques. We analyze hardware performance parameters and tradeoffs, and the bottlenecks which are intrinsic in several implementation methodologies. The constraints posed by hardware technologies onto algorithms and performance are also described. The results of the analyses proposed lead to the use of hardware/software codesign, as a means of exploiting the best from both hardware and software techniques. Hardware/software codesign appears, at present, the most promising research area concerning the implementation of neuro-fuzzy systems (not including bioinspired systems, which are out of the scope of this work), as it allows the fast design of complex systems with the highest performance/cost ratio.
机译:本文对人工神经系统和模糊系统的现有硬件实现进行了注释,并指出了模拟,数字,脉冲流(脉冲)和其他实现技术的局限性,优缺点。我们分析了硬件性能参数和折衷,以及几种实现方法中固有的瓶颈。还描述了硬件技术对算法和性能的约束。提议的分析结果导致使用硬件/软件代码签名,作为从硬件和软件技术中获得最大收益的一种手段。目前,硬件/软件代码签名似乎是有关神经模糊系统(不包括生物启发系统的实现)的最有前途的研究领域,因为它可以快速设计复杂的系统。最高的性能/成本比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号