首页> 外文期刊>IEEE Transactions on Neural Networks >Probabilistic approaches to fault detection in networked discrete event systems
【24h】

Probabilistic approaches to fault detection in networked discrete event systems

机译:网络离散事件系统中的概率故障检测方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider distributed systems that can be modeled as finite state machines with known behavior under fault-free conditions, and we study the detection of a general class of faults that manifest themselves as permanent changes in the next-state transition functionality of the system. This scenario could arise in a variety of situations encountered in communication networks, including faults occurred due to design or implementation errors during the execution of communication protocols. In our approach, fault diagnosis is performed by an external observer/diagnoser that functions as a finite state machine and which has access to the input sequence applied to the system but has only limited access to the system state or output. In particular, we assume that the observer/diagnoser is only able to obtain partial information regarding the state of the given system at intermittent time intervals that are determined by certain synchronizing conditions between the system and the observer/diagnoser. By adopting a probabilistic framework, we analyze ways to optimally choose these synchronizing conditions and develop adaptive strategies that achieve a low probability of aliasing, i.e., a low probability that the external observer/diagnoser incorrectly declares the system as fault-free. An application of these ideas in the context of protocol testing/classification is provided as an example.
机译:在本文中,我们考虑了可以在无故障条件下建模为具有已知行为的有限状态机的分布式系统,并且我们研究了检测到一般故障的一般类,这些故障表现为永久状态变化的下一状态转换功能。系统。在通信网络中遇到的各种情况下都可能出现这种情况,包括由于执行通信协议期间的设计或实现错误而导致的故障。在我们的方法中,故障诊断由外部观察者/诊断者执行,该外部观察者/诊断者充当有限状态机,并且可以访问应用于系统的输入序列,但只能访问系统状态或输出。特别地,我们假设观察者/诊断者仅能够以间歇时间间隔获得有关给定系统状态的部分信息,该间歇时间间隔是由系统与观察者/诊断者之间的某些同步条件确定的。通过采用概率框架,我们分析了最佳选择这些同步条件的方法并开发了实现低混叠概率(即外部观察者/诊断员错误地将系统声明为无故障的概率低)的自适应策略。提供这些思想在协议测试/分类的上下文中的应用作为示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号