首页> 外文期刊>IEEE Transactions on Neural Networks >Cue-guided search: a computational model of selective attention
【24h】

Cue-guided search: a computational model of selective attention

机译:提示引导搜索:选择性注意的计算模型

获取原文
获取原文并翻译 | 示例

摘要

Selective visual attention in a natural environment can be seen as the interaction between the external visual stimulus and task specific knowledge of the required behavior. This interaction between the bottom-up stimulus and the top-down, task-related knowledge is crucial for what is selected in the space and time within the scene. In this paper, we propose a computational model for selective attention for a visual search task. We go beyond simple saliency-based attention models to model selective attention guided by top-down visual cues, which are dynamically integrated with the bottom-up information. In this way, selection of a location is accomplished by interaction between bottom-up and top-down information. First, the general structure of our model is briefly introduced and followed by a description of the top-down processing of task-relevant cues. This is then followed by a description of the processing of the external images to give three feature maps that are combined to give an overall bottom-up map. Second, the development of the formalism for our novel interactive spiking neural network (ISNN) is given, with the interactive activation rule that calculates the integration map. The learning rule for both bottom-up and top-down weight parameters are given, together with some further analysis of the properties of the resulting ISNN. Third, the model is applied to a face detection task to search for the location of a specific face that is cued. The results show that the trajectories of attention are dramatically changed by interaction of information and variations of cues, giving an appropriate, task-relevant search pattern. Finally, we discuss ways in which these results can be seen as compatible with existing psychological evidence.
机译:在自然环境中的选择性视觉注意可以看作是外部视觉刺激与所需行为的任​​务特定知识之间的相互作用。自下而上的刺激与自上而下的,与任务相关的知识之间的这种交互对于在场景中的时空选择的内容至关重要。在本文中,我们提出了针对视觉搜索任务的选择性注意的计算模型。我们超越了简单的基于显着性的注意力模型,以自上而下的视觉提示引导模型化选择性关注,这些提示与自下而上的信息动态集成。这样,通过自下而上和自上而下的信息之间的交互来完成位置的选择。首先,简要介绍模型的一般结构,然后描述与任务相关的线索的自顶向下处理。然后,对外部图像的处理进行描述,以给出三个特征图,这些特征图被组合以给出整体的自下而上的图。其次,给出了我们新颖的交互式尖峰神经网络(ISNN)形式化的发展,以及用于计算积分图的交互式激活规则。给出了自下而上和自上而下的权重参数的学习规则,并对生成的ISNN的属性进行了一些进一步的分析。第三,将模型应用于面部检测任务,以搜索提示的特定面部的位置。结果表明,信息交互和线索变化极大地改变了注意力轨迹,从而提供了一种与任务相关的适当搜索模式。最后,我们讨论了可以将这些结果视为与现有心理证据兼容的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号