首页> 外文期刊>IEEE Transactions on Neural Networks >Partially connected feedforward neural networks structured by input types
【24h】

Partially connected feedforward neural networks structured by input types

机译:由输入类型构成的部分连接的前馈神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new method to model partially connected feedforward neural networks (PCFNNs) from the identified input type (IT) which refers to whether each input is coupled with or uncoupled from other inputs in generating output. The identification is done by analyzing input sensitivity changes as amplifying the magnitude of inputs. The sensitivity changes of the uncoupled inputs are not correlated with the variation on any other input, while those of the coupled inputs are correlated with the variation on any one of the coupled inputs. According to the identified ITs, a PCFNN can be structured. Each uncoupled input does not share the neurons in the hidden layer with other inputs in order to contribute to output in an independent manner, while the coupled inputs share the neurons with one another. After deriving the mathematical input sensitivity analysis for each IT, several experiments, as well as a real example (blood pressure (BP) estimation), are described to demonstrate how well our method works.
机译:本文提出了一种从识别的输入类型(IT)建模部分连接的前馈神经网络(PCFNN)的新方法,该方法指的是在生成输出时每个输入是与其他输入耦合还是与其他输入分离。通过分析输入灵敏度变化来放大输入幅度来完成识别。未耦合输入的灵敏度变化与任何其他输入的变化不相关,而耦合输入的灵敏度变化与任何一个耦合输入的变化相关。根据确定的IT,可以构造PCFNN。每个未耦合的输入不与其他输入共享隐藏层中的神经元,以便以独立的方式对输出做出贡献,而耦合的输入则彼此共享神经元。在得出每种IT的数学输入灵敏度分析之后,将描述几个实验以及一个真实的例子(血压(BP)估计),以证明我们的方法的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号