首页> 外文期刊>IEEE Transactions on Neural Networks >Training Reformulated Radial Basis Function Neural Networks Capable of Identifying Uncertainty in Data Classification
【24h】

Training Reformulated Radial Basis Function Neural Networks Capable of Identifying Uncertainty in Data Classification

机译:训练能够识别数据分类不确定性的重新构造的径向基函数神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a learning algorithm that can be used for training reformulated radial basis function neural networks (RBFNNs) capable of identifying uncertainty in data classification. This learning algorithm trains a special class of reformulated RBFNNs, known as cosine RBFNNs, by updating selected adjustable parameters to minimize the class-conditional variances at the outputs of their radial basis functions (RBFs). The experiments verify that quantum neural networks (QNNs) and cosine RBFNNs trained by the proposed learning algorithm are capable of identifying uncertainty in data classification, a property that is not shared by cosine RBFNNs trained by the original learning algorithm and conventional feed-forward neural networks (FFNNs). Finally, this study leads to a simple classification strategy that can be used to improve the classification accuracy of QNNs and cosine RBFNNs by rejecting ambiguous feature vectors based on their responses.
机译:本文介绍了一种学习算法,可用于训练能够识别数据分类不确定性的重构径向基函数神经网络(RBFNN)。该学习算法通过更新所选的可调参数以最小化其径向基函数(RBF)输出处的类条件方差,来训练一类特殊的经过重构的RBFNN,称为余弦RBFNN。实验证明,所提出的学习算法训练的量子神经网络(QNN)和余弦RBFNN能够识别数据分类中的不确定性,而原始学习算法和常规前馈神经网络训练的余弦RBFNN则无法共享这一特性。 (FFNN)。最后,本研究提出了一种简单的分类策略,该策略可通过基于响应的歧义特征向量来拒绝它们,从而提高QNN和余弦RBFNN的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号