首页> 外文期刊>IEEE Transactions on Neural Networks >Dynamically Reconfigurable Silicon Array of Spiking Neurons With Conductance-Based Synapses
【24h】

Dynamically Reconfigurable Silicon Array of Spiking Neurons With Conductance-Based Synapses

机译:具有基于电导性突触的尖峰神经元的动态可重配置硅阵列

获取原文
获取原文并翻译 | 示例

摘要

A mixed-signal very large scale integration (VLSI) chip for large scale emulation of spiking neural networks is presented. The chip contains 2400 silicon neurons with fully programmable and reconfigurable synaptic connectivity. Each neuron implements a discrete-time model of a single-compartment cell. The model allows for analog membrane dynamics and an arbitrary number of synaptic connections, each with tunable conductance and reversal potential. The array of silicon neurons functions as an address-event (AE) transceiver, with incoming and outgoing spikes communicated over an asynchronous event-driven digital bus. Address encoding and conflict resolution of spiking events are implemented via a randomized arbitration scheme that ensures balanced servicing of event requests across the array. Routing of events is implemented externally using dynamically programmable random-access memory that stores a postsynaptic address, the conductance, and the reversal potential of each synaptic connection. Here, we describe the silicon neuron circuits, present experimental data characterizing the 3 mm times 3 mm chip fabricated in 0.5-mum complementary metal-oxide-semiconductor (CMOS) technology, and demonstrate its utility by configuring the hardware to emulate a model of attractor dynamics and waves of neural activity during sleep in rat hippocampus
机译:提出了一种用于尖峰神经网络大规模仿真的混合信号超大规模集成(VLSI)芯片。该芯片包含2400个具有完全可编程和可重新配置突触连接能力的硅神经元。每个神经元都实现一个单室细胞的离散时间模型。该模型允许模拟膜动力学和任意数量的突触连接,每个都具有可调的电导和反向电位。硅神经元阵列用作地址事件(AE)收发器,传入和传出的尖峰信号通过异步事件驱动的数字总线进行通信。尖峰事件的地址编码和冲突解决是通过随机仲裁方案实现的,该方案可确保为整个阵列中的事件请求提供均衡的服务。事件的路由是使用可动态编程的随机存取存储器在外部实现的,该存储器存储每个突触连接的突触后地址,电导和反转电位。在这里,我们描述了硅神经元电路,给出了表征以0.5微米互补金属氧化物半导体(CMOS)技术制造的3毫米乘3毫米芯片的实验数据,并通过配置硬件以模拟吸引子模型来展示其实用性。大鼠海马睡眠期间神经活动的动力学和波

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号