首页> 外文期刊>IEEE Transactions on Neural Networks >Output Feedback NN Control for Two Classes of Discrete-Time Systems With Unknown Control Directions in a Unified Approach
【24h】

Output Feedback NN Control for Two Classes of Discrete-Time Systems With Unknown Control Directions in a Unified Approach

机译:两类具有未知控制方向的离散时间系统的输出反馈神经网络控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, output feedback adaptive neural network (NN) controls are investigated for two classes of nonlinear discrete-time systems with unknown control directions: (1) nonlinear pure-feedback systems and (2) nonlinear autoregressive moving average with exogenous inputs (NARMAX) systems. To overcome the noncausal problem, which has been known to be a major obstacle in the discrete-time control design, both systems are transformed to a predictor for output feedback control design. Implicit function theorem is used to overcome the difficulty of the nonaffine appearance of the control input. The problem of lacking a priori knowledge on the control directions is solved by using discrete Nussbaum gain. The high-order neural network (HONN) is employed to approximate the unknown control. The closed-loop system achieves semiglobal uniformly-ultimately-bounded (SGUUB) stability and the output tracking error is made within a neighborhood around zero. Simulation results are presented to demonstrate the effectiveness of the proposed control.
机译:本文针对控制方向未知的两类非线性离散时间系统,研究了输出反馈自适应神经网络(NN)控制:(1)非线性纯反馈系统和(2)带有外源输入的非线性自回归移动平均(NARMAX) )系统。为了克服已知为离散时间控制设计中主要障碍的非因果问题,两个系统都被转换为用于输出反馈控制设计的预测器。隐函数定理用于克服控制输入的非仿射外观的困难。通过使用离散的Nussbaum增益,可以解决在控制方向上缺乏先验知识的问题。高阶神经网络(HONN)用于近似未知控制。闭环系统实现了半全局一致极限极限(SGUUB)稳定性,并且输出跟踪误差在零附近的范围内。仿真结果表明了所提出控制的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号