首页> 外文期刊>IEEE Transactions on Neural Networks >Hybrid Multiobjective Evolutionary Design for Artificial Neural Networks
【24h】

Hybrid Multiobjective Evolutionary Design for Artificial Neural Networks

机译:人工神经网络的混合多目标进化设计

获取原文
获取原文并翻译 | 示例

摘要

Evolutionary algorithms are a class of stochastic search methods that attempts to emulate the biological process of evolution, incorporating concepts of selection, reproduction, and mutation. In recent years, there has been an increase in the use of evolutionary approaches in the training of artificial neural networks (ANNs). While evolutionary techniques for neural networks have shown to provide superior performance over conventional training approaches, the simultaneous optimization of network performance and architecture will almost always result in a slow training process due to the added algorithmic complexity. In this paper, we present a geometrical measure based on the singular value decomposition (SVD) to estimate the necessary number of neurons to be used in training a single-hidden-layer feedforward neural network (SLFN). In addition, we develop a new hybrid multiobjective evolutionary approach that includes the features of a variable length representation that allow for easy adaptation of neural networks structures, an architectural recombination procedure based on the geometrical measure that adapts the number of necessary hidden neurons and facilitates the exchange of neuronal information between candidate designs, and a microhybrid genetic algorithm (muHGA) with an adaptive local search intensity scheme for local fine-tuning. In addition, the performances of well-known algorithms as well as the effectiveness and contributions of the proposed approach are analyzed and validated through a variety of data set types.
机译:进化算法是一类随机搜索方法,它试图模仿进化的生物学过程,并结合选择,复制和突变的概念。近年来,在人工神经网络(ANN)的训练中,进化方法的使用有所增加。尽管用于神经网络的进化技术已显示出比传统训练方法优越的性能,但由于增加了算法复杂性,网络性能和体系结构的同时优化几乎总是会导致训练过程缓慢。在本文中,我们提出了一种基于奇异值分解(SVD)的几何度量,以估计用于训练单隐藏层前馈神经网络(SLFN)的必要神经元数量。此外,我们开发了一种新的混合型多目标进化方法,该方法包括可变长度表示的特征,可轻松适应神经网络结构,基于几何量度的建筑重组程序可适应必要的隐藏神经元的数量,并有助于候选设计之间的神经元信息交换,以及具有用于局部微调的自适应局部搜索强度方案的微混合遗传算法(muHGA)。此外,还通过各种数据集类型分析和验证了著名算法的性能以及所提出方法的有效性和贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号