首页> 外文期刊>IEEE Transactions on Neural Networks >An Expectation–Maximization Method for Spatio–Temporal Blind Source Separation Using an AR-MOG Source Model
【24h】

An Expectation–Maximization Method for Spatio–Temporal Blind Source Separation Using an AR-MOG Source Model

机译:使用AR-MOG源模型的时空盲源分离的期望最大化方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a maximum-likelihood (ML) spatio–temporal blind source separation (BSS) algorithm, where the temporal dependencies are explained by assuming that each source is an autoregressive (AR) process and the distribution of the associated independent identically distributed (i.i.d.) innovations process is described using a mixture of Gaussians. Unlike most ML methods, the proposed algorithm takes into account both spatial and temporal information, optimization is performed using the expectation–maximization (EM) method, the source model is adapted to maximize the likelihood, and the update equations have a simple, analytical form. The proposed method, which we refer to as autoregressive mixture of Gaussians (AR-MOG), outperforms nine other methods for artificial mixtures of real audio. We also show results for using AR-MOG to extract the fetal cardiac signal from real magnetocardiographic (MCG) data.
机译:在本文中,我们开发了最大似然(ML)时空盲源分离(BSS)算法,其中通过假设每个源是自回归(AR)过程和相关独立独立的分布来解释时间依赖性混合(高斯)描述了分布式(iid)创新过程。与大多数ML方法不同,该算法考虑了时空信息,使用期望最大化(EM)方法进行优化,对源模型进行调整以使可能性最大化,并且更新方程具有简单的分析形式。所提出的方法,我们称为高斯自回归混合(AR-MOG),优于其他九种方法,用于真实音频的人工混合。我们还显示了使用AR-MOG从真实心电图(MCG)数据中提取胎儿心脏信号的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号