首页> 外文期刊>IEEE Transactions on Neural Networks >Lattice Dynamical Wavelet Neural Networks Implemented Using Particle Swarm Optimization for Spatio–Temporal System Identification
【24h】

Lattice Dynamical Wavelet Neural Networks Implemented Using Particle Swarm Optimization for Spatio–Temporal System Identification

机译:基于粒子群优化的时空系统辨识的格子动态小波神经网络

获取原文
获取原文并翻译 | 示例

摘要

In this brief, by combining an efficient wavelet representation with a coupled map lattice model, a new family of adaptive wavelet neural networks, called lattice dynamical wavelet neural networks (LDWNNs), is introduced for spatio-temporal system identification. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm optimization (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, by applying the OPP algorithm, significant wavelet neurons are adaptively and successively recruited into the network, where adjustable parameters of the associated wavelet neurons are optimized using a particle swarm optimizer. The resultant network model, obtained in the first stage, however, may be redundant. In the second stage, an orthogonal least squares algorithm is then applied to refine and improve the initially trained network by removing redundant wavelet neurons from the network. An example for a real spatio-temporal system identification problem is presented to demonstrate the performance of the proposed new modeling framework.
机译:在本文中,通过将有效的小波表示与耦合的地图格模型相结合,引入了一种新的自适应小波神经网络族,称为格动态小波神经网络(LDWNN),用于时空系统识别。提出了一种新的正交投影追踪(OPP)方法,并结合了粒子群优化(PSO)算法,以增强所提出的网络。开发了一种新颖的两阶段混合训练方案,用于构建简约网络模型。在第一阶段,通过应用OPP算法,重要的小波神经元被自适应地并连续地募集到网络中,在该网络中,使用粒子群优化器优化了相关小波神经元的可调整参数。但是,在第一阶段获得的最终网络模型可能是多余的。在第二阶段,然后通过从网络中删除多余的小波神经元,应用正交最小二乘算法来优化和改进最初训练的网络。给出了一个真实的时空系统识别问题的例子,以证明所提出的新建模框架的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号