首页> 外文期刊>Neural Networks, IEEE Transactions on >Quaternion-Based Adaptive Output Feedback Attitude Control of Spacecraft Using Chebyshev Neural Networks
【24h】

Quaternion-Based Adaptive Output Feedback Attitude Control of Spacecraft Using Chebyshev Neural Networks

机译:Chebyshev神经网络的基于四元数的航天器自适应输出反馈姿态控制

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.
机译:本文研究了不确定航天器的输出反馈姿态控制问题。针对航天器的姿态跟踪控制,提出了两种基于切比雪夫神经网络(CNN)的鲁棒自适应输出反馈控制器,分别称为自适应神经网络控制器(I)和自适应神经网络控制器(II)。四参数表示法(四元数)用于描述航天器在没有奇异点的情况下的整体表示姿态。非线性降阶观测器用于估计航天器输出的导数,并且引入CNN通过近似航天器姿态运动来进一步提高控制性能。在所提出的控制器中使用的CNN基本功能的实现仅取决于所需信号,并且使用使用双曲正切函数的平滑鲁棒补偿器来抵消CNN逼近误差和外部干扰。自适应NN控制器II可以有效避免自适应NN中存在的过高估计问题(即CNN输出的边界比近似未知函数的边界大得多,因此控制输入可能非常大)控制器-I。使用CNN的两个自适应输出反馈控制器都可以确保最终闭环系统中的所有信号均最终受到一致的限制。为了进行性能比较,还开发了使用航天器姿态运动的线性参数化的标准自适应控制器。仿真研究表明,与标准的自适应输出反馈方法相比,所提出的基于CNN的输出反馈方法具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号