首页> 外文期刊>Neural Networks, IEEE Transactions on >Robust Adaptive Neural Network Control for a Class of Uncertain MIMO Nonlinear Systems With Input Nonlinearities
【24h】

Robust Adaptive Neural Network Control for a Class of Uncertain MIMO Nonlinear Systems With Input Nonlinearities

机译:一类具有输入非线性不确定MIMO非线性系统的鲁棒自适应神经网络控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, robust adaptive neural network (NN) control is investigated for a general class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems with unknown control coefficient matrices and input nonlinearities. For nonsymmetric input nonlinearities of saturation and deadzone, variable structure control (VSC) in combination with backstepping and Lyapunov synthesis is proposed for adaptive NN control design with guaranteed stability. In the proposed adaptive NN control, the usual assumption on nonsingularity of NN approximation for unknown control coefficient matrices and boundary assumption between NN approximation error and control input have been eliminated. Command filters are presented to implement physical constraints on the virtual control laws, then the tedious analytic computations of time derivatives of virtual control laws are canceled. It is proved that the proposed robust backstepping control is able to guarantee semiglobal uniform ultimate boundedness of all signals in the closed-loop system. Finally, simulation results are presented to illustrate the effectiveness of the proposed adaptive NN control.
机译:本文针对具有未知控制系数矩阵和输入非线性的一类不确定的多输入多输出(MIMO)非线性系统,研究了鲁棒自适应神经网络(NN)控制。针对饱和度和死区的非对称输入非线性,提出了将变结构控制(VSC)与反推和Lyapunov综合相结合的方法,用于具有保证稳定性的自适应NN控制设计。在提出的自适应NN控制中,消除了关于未知控制系数矩阵的NN逼近非奇异性的通常假设以及NN逼近误差与控制输入之间的边界假设。提出了命令过滤器以对虚拟控制律实施物理约束,然后取消了虚拟控制律的时间导数的繁琐的解析计算。实践证明,所提出的鲁棒逆推控制能够保证闭环系统中所有信号的半全局一致最终有界性。最后,仿真结果表明了所提出的自适应神经网络控制的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号