首页> 外文期刊>Neural Networks, IEEE Transactions on >Margin-Maximizing Feature Elimination Methods for Linear and Nonlinear Kernel-Based Discriminant Functions
【24h】

Margin-Maximizing Feature Elimination Methods for Linear and Nonlinear Kernel-Based Discriminant Functions

机译:基于线性和非线性核的判别函数的边缘最大化特征消除方法

获取原文
获取原文并翻译 | 示例

摘要

Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature ¿markers.¿ For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom-the hyperplane's intercept and its squared 2-norm-with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.
机译:在高维空间中进行分类的特征选择可以提高泛化能力,降低分类器的复杂度,并识别出重要的,有区别的特征标记。对于支持向量机(SVM)分类,广泛使用的技术是递归特征消除(RFE)。我们证明,RFE与边际最大化不一致,这是SVM学习方法的核心。因此,与RFE相比,我们提出了针对SVM的显式基于余量的特征消除(MFE),并展示了改进的余量和改进的泛化能力。此外,对于非线性核的情况,我们表明RFE假设随着特征消除,平方加权向量2-范数严格减小。我们证明这对于高斯内核是不正确的,因此,在这种情况下,RFE可能会给出较差的结果。非线性内核的MFE可以提供更好的余量和泛化。我们还提出了一种扩展,它通过仅优化两个自由度(超平面的截距及其平方2范数),并在权重矢量方向固定的情况下获得了更大的边际收益。最后,我们引入一种扩展,允许余量松弛。我们比较了几种替代方案,包括RFE和将特征选择嵌入分类器设计的线性编程方法。在高维基因微阵列数据集,加州大学尔湾分校(UCI)储存库数据集和阿尔茨海默氏病脑图像数据上,MFE方法给出了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号