首页> 外文期刊>Neural Networks, IEEE Transactions on >Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast With Algebraic Optimal Step Size
【24h】

Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast With Algebraic Optimal Step Size

机译:迭代最大化峰化对比度的代数最优步长鲁棒独立分量分析

获取原文
获取原文并翻译 | 示例

摘要

Independent component analysis (ICA) aims at decomposing an observed random vector into statistically independent variables. Deflation-based implementations, such as the popular one-unit FastICA algorithm and its variants, extract the independent components one after another. A novel method for deflationary ICA, referred to as RobustICA, is put forward in this paper. This simple technique consists of performing exact line search optimization of the kurtosis contrast function. The step size leading to the global maximum of the contrast along the search direction is found among the roots of a fourth-degree polynomial. This polynomial rooting can be performed algebraically, and thus at low cost, at each iteration. Among other practical benefits, RobustICA can avoid prewhitening and deals with real- and complex-valued mixtures of possibly noncircular sources alike. The absence of prewhitening improves asymptotic performance. The algorithm is robust to local extrema and shows a very high convergence speed in terms of the computational cost required to reach a given source extraction quality, particularly for short data records. These features are demonstrated by a comparative numerical analysis on synthetic data. RobustICA's capabilities in processing real-world data involving noncircular complex strongly super-Gaussian sources are illustrated by the biomedical problem of atrial activity (AA) extraction in atrial fibrillation (AF) electrocardiograms (ECGs), where it outperforms an alternative ICA-based technique.
机译:独立成分分析(ICA)旨在将观察到的随机向量分解为统计上独立的变量。基于通货紧缩的实现(例如流行的一个单元FastICA算法及其变体)会陆续提取独立的组件。提出了一种新的通缩ICA方法,称为RobustICA。这种简单的技术包括对峰度对比函数执行精确的线搜索优化。在四次多项式的根中找到导致沿着搜索方向的对比度全局最大值的步长。该多项式求根可以在每次迭代时以代数方式进行,因此成本较低。除其他实际好处外,RobustICA可以避免预白化,并且可以处理可能包含非圆形来源的实值和复值混合物。无需预增白可改善渐近性能。该算法对局部极值具有鲁棒性,并且在达到给定源提取质量所需的计算成本方面表现出非常高的收敛速度,尤其是对于短数据记录而言。这些特征通过对合成数据的比较数值分析得到证明。心房颤动(AF)心电图(ECG)中心房活动(AA)提取的生物医学问题说明了RobustICA处理涉及非圆形复杂强超高斯源的真实数据的能力,其性能优于其他基于ICA的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号