首页> 外文期刊>IEEE signal processing letters >A Contrast for Independent Component Analysis With Priors on the Source Kurtosis Signs
【24h】

A Contrast for Independent Component Analysis With Priors on the Source Kurtosis Signs

机译:源峰度信号与先验独立成分分析的对比

获取原文
获取原文并翻译 | 示例

摘要

A contrast function for independent component analysis (ICA) is presented incorporating the prior knowledge on the sub-Gaussian or super-Gaussian character of the sources as described by their kurtosis signs. The contrast is related to the maximum likelihood principle, reduces the permutation indeterminacy typical of ICA, and proves particularly useful in the direct extraction of a source signal with distinct kurtosis sign. In addition, its numerical maximization can be performed cost-effectively by a Jacobi-like pairwise iteration. Extensions to standardized cumulants of orders other than four are also given.
机译:提出了一种用于独立成分分析(ICA)的对比函数,该函数结合了关于源的高斯型或超高斯型特征的先验知识,如峰度符号所描述的那样。对比度与最大似然原理有关,减少了ICA典型的排列不确定性,并被证明在直接提取具有不同峰度符号的源信号中特别有用。此外,其数值最大化可以通过类雅可比(Jacobi)类成对迭代来经济高效地执行。还扩展了除四个订单以外的标准累积量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号