首页> 外文期刊>Neural Networks, IEEE Transactions on >Adaptive Tracking for Periodically Time-Varying and Nonlinearly Parameterized Systems Using Multilayer Neural Networks
【24h】

Adaptive Tracking for Periodically Time-Varying and Nonlinearly Parameterized Systems Using Multilayer Neural Networks

机译:使用多层神经网络的时变和非线性参数化系统的自适应跟踪

获取原文
获取原文并翻译 | 示例

摘要

This brief addresses the problem of designing adaptive neural network tracking control for a class of strict-feedback systems with unknown time-varying disturbances of known periods which nonlinearly appear in unknown functions. Multilayer neural network (MNN) and Fourier series expansion (FSE) are combined into a novel approximator to model each uncertainty in systems. Dynamic surface control (DSC) approach and integral-type Lyapunov function (ILF) technique are combined to design the control algorithm. The ultimate uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. Two simulation examples are provided to illustrate the feasibility of control scheme proposed in this brief.
机译:本简介解决了为一类严格反馈系统设计自适应神经网络跟踪控制的问题,该系统具有未知周期的未知时变扰动,并且非线性地出现在未知函数中。多层神经网络(MNN)和傅立叶级数展开(FSE)组合成一个新颖的近似器,可以对系统中的每个不确定性进行建模。结合动态表面控制(DSC)方法和积分型Lyapunov函数(ILF)技术来设计控制算法。所有闭环信号的最终均匀有界性得到保证。跟踪误差被证明收敛到原点周围的一个小的残差集合。提供了两个仿真示例,以说明此摘要中提出的控制方案的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号