首页> 外文期刊>Neural Networks, IEEE Transactions on >Data-Core-Based Fuzzy Min–Max Neural Network for Pattern Classification
【24h】

Data-Core-Based Fuzzy Min–Max Neural Network for Pattern Classification

机译:基于数据核的模糊最小-最大神经网络的模式分类

获取原文
获取原文并翻译 | 示例

摘要

A fuzzy min–max neural network based on data core (DCFMN) is proposed for pattern classification. A new membership function for classifying the neuron of DCFMN is defined in which the noise, the geometric center of the hyperbox, and the data core are considered. Instead of using the contraction process of the FMNN described by Simpson, a kind of overlapped neuron with new membership function based on the data core is proposed and added to neural network to represent the overlapping area of hyperboxes belonging to different classes. Furthermore, some algorithms of online learning and classification are presented according to the structure of DCFMN. DCFMN has strong robustness and high accuracy in classification taking onto account the effect of data core and noise. The performance of DCFMN is checked by some benchmark datasets and compared with some traditional fuzzy neural networks, such as the fuzzy min-max neural network (FMNN), the general FMNN, and the FMNN with compensatory neuron. Finally the pattern classification of a pipeline is evaluated using DCFMN and other classifiers. All the results indicate that the performance of DCFMN is excellent.
机译:提出了一种基于数据核的模糊最小-最大神经网络(DCFMN)用于模式分类。定义了一种新的隶属函数,用于对DCFMN的神经元进行分类,其中考虑了噪声,超框的几何中心和数据核。代替使用辛普森描述的FMNN的收缩过程,提出了一种基于数据核的具有新隶属度函数的重叠神经元,并将其添加到神经网络中以表示属于不同类的超框的重叠区域。此外,根据DCFMN的结构,提出了一些在线学习和分类的算法。考虑到数据核心和噪声的影响,DCFMN具有强大的鲁棒性和较高的分类精度。 DCFMN的性能通过一些基准数据集进行检查,并与一些传统的模糊神经网络进行比较,例如模糊最小-最大神经网络(FMNN),通用FMNN和带补偿神经元的FMNN。最后,使用DCFMN和其他分类器评估管道的模式分类。所有结果表明,DCFMN的性能优异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号