首页> 外文期刊>Neural Networks, IEEE Transactions on >Data-Based Fault-Tolerant Control of High-Speed Trains With Traction/Braking Notch Nonlinearities and Actuator Failures
【24h】

Data-Based Fault-Tolerant Control of High-Speed Trains With Traction/Braking Notch Nonlinearities and Actuator Failures

机译:具有牵引/制动缺口非线性和执行器故障的高速列车基于数据的容错控制

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the position and velocity tracking control problem of high-speed trains with multiple vehicles connected through couplers. A dynamic model reflecting nonlinear and elastic impacts between adjacent vehicles as well as traction/braking nonlinearities and actuation faults is derived. Neuroadaptive fault-tolerant control algorithms are developed to account for various factors such as input nonlinearities, actuator failures, and uncertain impacts of in-train forces in the system simultaneously. The resultant control scheme is essentially independent of system model and is primarily data-driven because with the appropriate input-output data, the proposed control algorithms are capable of automatically generating the intermediate control parameters, neuro-weights, and the compensation signals, literally producing the traction/braking force based upon input and response data only- the whole process does not require precise information on system model or system parameter, nor human intervention. The effectiveness of the proposed approach is also confirmed through numerical simulations.
机译:本文研究了多车通过耦合器连接的高速列车的位置和速度跟踪控制问题。建立了反映相邻车辆之间非线性和弹性冲击以及牵引/制动非线性和致动故障的动力学模型。开发了神经自适应容错控制算法,以解决各种因素,例如输入非线性,执行器故障以及系统中列车内力的不确定影响。最终的控制方案基本上独立于系统模型,并且主要由数据驱动,因为通过适当的输入输出数据,所提出的控制算法能够自动生成中间控制参数,神经权重和补偿信号,从字面上产生牵引力/制动力仅基于输入和响应数据-整个过程不需要有关系统模型或系统参数的精确信息,也不需要人工干预。数值模拟也证实了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号