首页> 美国卫生研究院文献>Materials >Thermo-Mechanical Coupling Analyses for Al Alloy Brake Discs with Al2O3-SiC(3D)/Al Alloy Composite Wear-Resisting Surface Layer for High-Speed Trains
【2h】

Thermo-Mechanical Coupling Analyses for Al Alloy Brake Discs with Al2O3-SiC(3D)/Al Alloy Composite Wear-Resisting Surface Layer for High-Speed Trains

机译:高速列车用Al2O3-SiC(3D)/铝合金复合耐磨表面层的铝合金制动盘的热力耦合分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the present work, a theoretical model of three-dimensional (3D) transient temperature field for Al alloy brake discs with Al O -SiC /Al alloy wear-resisting surface layer was established. 3D transient thermo-stress coupling finite element (FE) and computational fluid dynamic (CFD) models of the brake discs was presented. The variation regularities of transient temperature and internal temperature gradient of the brake discs under different emergency braking conditions were obtained. The effects of initial braking velocity (IBV) and thickness of Al O -SiC /Al alloy composite wear-resisting layer on the maximum friction temperature evolution of the disc were discussed. The results indicated the lower temperature and thermal stress distributed uniformly on the wear-resisting surface, which was dominated by high conductivity and cooling ability of the Al alloy brake disc. The maximum friction temperature was not obviously affected by the thickness of the wear-resisting layer. The maximum friction temperature of the brake discs increased with the increase of the IBV, the maximum friction temperature and thermal stress of the brake discs is about 517 °C and 192 MPa at IBV = 97 m/s considering air cooling, respectively. The lower thermal stress and fewer thermal cracks are produced during the braking process, which relatively decrease the damage. The friction behavior of the tribo-couple predicted using FE method correlated well with the experimental results obtained by sub-scale testing.
机译:在本文中,建立了具有Al O -SiC / Al耐磨表面层的铝合金制动盘的三维(3D)瞬态温度场的理论模型。提出了制动盘的3D瞬态热应力耦合有限元(FE)和计算流体动力学(CFD)模型。获得了不同紧急制动条件下制动盘瞬态温度和内部温度梯度的变化规律。讨论了初始制动速度(IBV)和Al O -SiC / Al合金复合耐磨层厚度对制动盘最大摩擦温度演变的影响。结果表明,较低的温度和热应力均匀地分布在耐磨表面上,这主要由铝合金制动盘的高电导率和冷却能力决定。最大摩擦温度不受耐磨层厚度的明显影响。制动盘的最大摩擦温度随IBV的增加而增加,考虑空气冷却,在IBV = 97 m / s时,制动盘的最大摩擦温度和热应力分别约为517°C和192 MPa。在制动过程中产生较低的热应力和较少的热裂纹,这相对减少了损坏。用有限元方法预测的摩擦偶的摩擦行为与通过子尺度测试获得的实验结果密切相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号