首页> 外文期刊>Neural Networks, IEEE Transactions on >Modeling Activity-Dependent Plasticity in BCM Spiking Neural Networks With Application to Human Behavior Recognition
【24h】

Modeling Activity-Dependent Plasticity in BCM Spiking Neural Networks With Application to Human Behavior Recognition

机译:BCM穗状神经网络中与活动有关的可塑性建模及其在人类行为识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Spiking neural networks (SNNs) are considered to be computationally more powerful than conventional NNs. However, the capability of SNNs in solving complex real-world problems remains to be demonstrated. In this paper, we propose a substantial extension of the Bienenstock, Cooper, and Munro (BCM) SNN model, in which the plasticity parameters are regulated by a gene regulatory network (GRN). Meanwhile, the dynamics of the GRN is dependent on the activation levels of the BCM neurons. We term the whole model “GRN-BCM.” To demonstrate its computational power, we first compare the GRN-BCM with a standard BCM, a hidden Markov model, and a reservoir computing model on a complex time series classification problem. Simulation results indicate that the GRN-BCM significantly outperforms the compared models. The GRN-BCM is then applied to two widely used datasets for human behavior recognition. Comparative results on the two datasets suggest that the GRN-BCM is very promising for human behavior recognition, although the current experiments are still limited to the scenarios in which only one object is moving in the considered video sequences.
机译:尖峰神经网络(SNN)被认为比常规NN具有更强大的计算能力。但是,SNN解决复杂现实问题的能力仍有待证明。在本文中,我们提出了Bienenstock,Cooper和Munro(BCM)SNN模型的实质扩展,其中可塑性参数由基因调控网络(GRN)调控。同时,GRN的动力学取决于BCM神经元的激活水平。我们将整个模型称为“ GRN-BCM”。为了证明其计算能力,我们首先将GRN-BCM与标准BCM,隐马尔可夫模型和储层计算模型进行了比较,以解决复杂的时间序列分类问题。仿真结果表明,GRN-BCM明显优于比较模型。然后,将GRN-BCM应用于两个广泛使用的人类行为识别数据集。两个数据集的比较结果表明,GRN-BCM在人类行为识别方面非常有前途,尽管当前的实验仍仅限于在考虑的视频序列中只有一个物体移动的场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号