首页> 外文期刊>Neural computation >Reconciling the STDP and BCM Models of Synaptic Plasticity in a Spiking Recurrent Neural Network
【24h】

Reconciling the STDP and BCM Models of Synaptic Plasticity in a Spiking Recurrent Neural Network

机译:在尖峰递归神经网络中协调突触可塑性的STDP和BCM模型

获取原文
获取原文并翻译 | 示例

摘要

Rate-coded Hebbian learning, as characterized by the BCM formulation, is an established computational model of synaptic plasticity. Recently it has been demonstrated that changes in the strength of synapses in vivo can also depend explicitly on the relative timing of pre- and post-synaptic firing. Computational modeling of this spike-timing-dependent plasticity (STDP) has demonstrated that it can provide inherent stability or competition based on local synaptic variables. However, it has also been demonstrated that these properties rely on synaptic weights being either depressed or unchanged by an increase in mean stochastic firing rates, which directly contradicts empirical data. Several analytical studies have addressed this apparent dichotomy and identified conditions under which distinct and disparate STDP rules can be reconciled with rate-coded Hebbian learning. The aim of this research is to verify, unify, and expand on these previous findings by manipulating each element of a standard computational STDP model in turn. This allows us to identify the conditions under which this plasticity rule can replicate experimental data obtained using both rate and temporal stimulation protocols in a spiking recurrent neural network. Our results describe how the relative scale of mean synaptic weights and their dependence on stochastic pre- or postsynaptic firing rates can be manipulated by adjusting the exact profile of the asymmetric learning window and temporal restrictions on spike pair interactions respectively. These findings imply that previously disparate models of rate-coded autoassociative learning and temporally coded heteroassociative learning, mediated by symmetric and asymmetric connections respectively, can be implemented in a single network using a single plasticity rule. However, we also demonstrate that forms of STDP that can be reconciled with rate-coded Hebbianrnlearning do not generate inherent synaptic competition, and thus some additional mechanism is required to guarantee long-term input-output selectivity.
机译:以BCM公式为特征的速率编码的Hebbian学习是已建立的突触可塑性计算模型。最近已经证明,体内突触强度的改变也可以明确地取决于突触前和突触后发射的相对时间。对这种依赖于峰时机的可塑性(STDP)的计算模型表明,它可以基于局部突触变量提供固有的稳定性或竞争性。但是,也已经证明,这些特性依赖于平均随机放电速率的增加而使突触权重降低或保持不变,这直接与经验数据相矛盾。几项分析研究已经解决了这种明显的二分法,并确定了条件,在这些条件下,不同且不同的STDP规则可以与速率编码的Hebbian学习相协调。这项研究的目的是通过依次处理标准计算STDP模型的每个元素来验证,统一和扩展这些先前的发现。这使我们能够确定条件,在该条件下,该可塑性规则可以在尖峰循环神经网络中复制使用速率和时间刺激方案获得的实验数据。我们的结果描述了平均突触权重的相对范围及其对随机突触前或突触后放电频率的依赖性如何通过分别调整非对称学习窗的精确轮廓和尖峰对相互作用的时间限制来进行控制。这些发现暗示,分别由对称连接和非对称连接介导的速率编码自动联想学习和时间编码异联想学习的先前完全不同的模型可以使用单个可塑性规则在单个网络中实现。但是,我们还证明,可以与速率编码的Hebbianrnlearning协调的STDP形式不会产生固有的突触竞争,因此需要一些其他机制来保证长期的输入输出选择性。

著录项

  • 来源
    《Neural computation》 |2010年第8期|P.2059-2085|共27页
  • 作者单位

    Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton, Sussex BN1 9QG, U.K.;

    rnCentre for Computational Neuroscience and Robotics, University of Sussex, Brighton, Sussex BN1 9QG, U.K.;

    rnCentre for Computational Neuroscience and Robotics, University of Sussex, Brighton, Sussex BN1 9QG, U.K.;

    rnCentre for Computational Neuroscience and Robotics, University of Sussex, Brighton, Sussex BN1 9QG, U.K.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号