首页> 外文期刊>Neural Networks, IEEE Transactions on >Global Asymptotic Stability for a Class of Generalized Neural Networks With Interval Time-Varying Delays
【24h】

Global Asymptotic Stability for a Class of Generalized Neural Networks With Interval Time-Varying Delays

机译:一类具有时变时滞的广义神经网络的全局渐近稳定性

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with global asymptotic stability for a class of generalized neural networks (NNs) with interval time-varying delays, which include two classes of fundamental NNs, i.e., static neural networks (SNNs) and local field neural networks (LFNNs), as their special cases. Some novel delay-independent and delay-dependent stability criteria are derived. These stability criteria are applicable not only to SNNs but also to LFNNs. It is theoretically proven that these stability criteria are more effective than some existing ones either for SNNs or for LFNNs, which is confirmed by some numerical examples.
机译:本文涉及一类具有间隔时变时滞的广义神经网络(NN)的全局渐近稳定性,其中包括两类基本神经网络,即静态神经网络(SNN)和局部场神经网络(LFNN),作为他们的特例。推导了一些新颖的时滞无关和时滞依赖性稳定性准则。这些稳定性标准不仅适用于SNN,而且适用于LFNN。理论上证明,对于SNN或LFNN,这些稳定性标准比某些现有标准更有效,这已通过一些数值示例得到了证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号