首页> 外文期刊>Neural Networks, IEEE Transactions on >Analyzing the Scaling of Connectivity in Neuromorphic Hardware and in Models of Neural Networks
【24h】

Analyzing the Scaling of Connectivity in Neuromorphic Hardware and in Models of Neural Networks

机译:分析神经形态硬件和神经网络模型中连通性的缩放比例

获取原文
获取原文并翻译 | 示例

摘要

In recent years, neuromorphic hardware systems have significantly grown in size. With more and more neurons and synapses integrated in such systems, the neural connectivity and its configurability have become crucial design constraints. To tackle this problem, we introduce a generic extended graph description of connection topologies that allows a systematical analysis of connectivity in both neuromorphic hardware and neural network models. The unifying nature of our approach enables a close exchange between hardware and models. For an existing hardware system, the optimally matched network model can be extracted. Inversely, a hardware architecture may be fitted to a particular model network topology with our description method. As a further strength, the extended graph can be used to quantify the amount of configurability for a certain network topology. This is a hardware design variable that has widely been neglected, mainly because of a missing analysis method. To condense our analysis results, we develop a classification for the scaling complexity of network models and neuromorphic hardware, based on the total number of connections and the configurability. We find a gap between several models and existing hardware, making these hardware systems either impossible or inefficient to use for scaled-up network models. In this respect, our analysis results suggest models with locality in their connections as promising approach for tackling this scaling gap.
机译:近年来,神经形态硬件系统的大小已显着增长。随着越来越多的神经元和突触集成在此类系统中,神经连通性及其可配置性已成为关键的设计约束。为了解决这个问题,我们引入了连接拓扑的通用扩展图描述,该描述允许系统地分析神经形态硬件和神经网络模型中的连接性。我们方法的统一本质使硬件和模型之间可以紧密交换。对于现有的硬件系统,可以提取最佳匹配的网络模型。相反,可以使用我们的描述方法将硬件体系结构适配到特定的模型网络拓扑。作为进一步的优势,扩展图可用于量化某些网络拓扑的可配置性。这是一个被广泛忽略的硬件设计变量,主要是因为缺少分析方法。为了压缩我们的分析结果,我们根据连接的总数和可配置性为网络模型和神经形态硬件的缩放复杂性开发了一个分类。我们发现几种模型与现有硬件之间存在差距,这使得这些硬件系统无法或无法有效地用于大规模网络模型。在这方面,我们的分析结果表明,在它们的连接中具有局部性的模型是解决此缩放差距的有希望的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号