首页> 外文期刊>Neural Networks, IEEE Transactions on >Adaptive Dynamic Programming for Finite-Horizon Optimal Control of Discrete-Time Nonlinear Systems With $varepsilon$-Error Bound
【24h】

Adaptive Dynamic Programming for Finite-Horizon Optimal Control of Discrete-Time Nonlinear Systems With $varepsilon$-Error Bound

机译:误差为$ varepsilon $的离散非线性系统有限水平最优控制的自适应动态规划

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an $varepsilon$-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.
机译:在本文中,我们使用自适应动态规划(ADP)方法研究离散时间非线性系统的有限水平最优控制问题。想法是使用迭代ADP算法获得最优控制律,该最优控制律使性能指标函数接近$ varepsilon $误差范围内所有性能指标的最大下限。最佳控制步数也可以通过提出的ADP算法获得。从性能指标函数和控制策略两方面对提出的ADP算法进行了收敛性分析。为了促进迭代ADP算法的实现,神经网络用于逼近性能指标函数,计算最优控制策略以及对非线性系统进行建模。最后,通过两个仿真例子说明了该方法的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号