首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Noise-Tuning-Based Hysteretic Noisy Chaotic Neural Network for Broadcast Scheduling Problem in Wireless Multihop Networks
【24h】

Noise-Tuning-Based Hysteretic Noisy Chaotic Neural Network for Broadcast Scheduling Problem in Wireless Multihop Networks

机译:无线多跳网络中基于噪声调谐的迟滞噪声混沌神经网络的广播调度问题

获取原文
获取原文并翻译 | 示例

摘要

Compared with noisy chaotic neural networks (NCNNs), hysteretic noisy chaotic neural networks (HNCNNs) are more likely to exhibit better optimization performance at higher noise levels, but behave worse at lower noise levels. In order to improve the optimization performance of HNCNNs, this paper presents a novel noise-tuning-based hysteretic noisy chaotic neural network (NHNCNN). Using a noise tuning factor to modulate the level of stochastic noises, the proposed NHNCNN not only balances stochastic wandering and chaotic searching, but also exhibits stronger hysteretic dynamics, thereby improving the optimization performance at both lower and higher noise levels. The aim of the broadcast scheduling problem (BSP) in wireless multihop networks (WMNs) is to design an optimal time-division multiple-access frame structure with minimal frame length and maximal channel utilization. A gradual NHNCNN (G-NHNCNN), which combines the NHNCNN with the gradual expansion scheme, is applied to solve BSP in WMNs to demonstrate the performance of the NHNCNN. Simulation results show that the proposed NHNCNN has a larger probability of finding better solutions compared to both the NCNN and the HNCNN regardless of whether noise amplitudes are lower or higher.
机译:与噪声混沌神经网络(NCNN)相比,滞后噪声混沌神经网络(HNCNN)在较高噪声水平下更可能表现出更好的优化性能,而在较低噪声水平下表现较差。为了提高HNCNN的优化性能,本文提出了一种基于噪声调谐的滞回噪声混沌神经网络(NHNCNN)。提出的NHNCNN使用噪声调整因子来调制随机噪声的水平,不仅可以平衡随机漂移和混沌搜索,而且还具有更强的磁滞动态特性,从而提高了在较低和较高噪声水平下的优化性能。无线多跳网络(WMN)中的广播调度问题(BSP)的目的是设计一种具有最小帧长和最大信道利用率的最佳时分多址帧结构。结合NHNCNN和渐进扩展方案的渐进式NHNCNN(G-NHNCNN)被用于解决WMN中的BSP,以证明NHNCNN的性能。仿真结果表明,无论噪声幅度是较低还是较高,与NCNN和HNCNN相比,提出的NHNCNN都有更大的概率找到更好的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号