首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Time Series Modeling and Forecasting Using Memetic Algorithms for Regime-Switching Models
【24h】

Time Series Modeling and Forecasting Using Memetic Algorithms for Regime-Switching Models

机译:模式转换模型的时间序列建模和预测使用模因算法

获取原文
获取原文并翻译 | 示例

摘要

In this brief, we present a novel model fitting procedure for the neuro-coefficient smooth transition autoregressive model (NCSTAR), as presented by Medeiros and Veiga. The model is endowed with a statistically founded iterative building procedure and can be interpreted in terms of fuzzy rule-based systems. The interpretability of the generated models and a mathematically sound building procedure are two very important properties of forecasting models. The model fitting procedure employed by the original NCSTAR is a combination of initial parameter estimation by a grid search procedure with a traditional local search algorithm. We propose a different fitting procedure, using a memetic algorithm, in order to obtain more accurate models. An empirical evaluation of the method is performed, applying it to various real-world time series originating from three forecasting competitions. The results indicate that we can significantly enhance the accuracy of the models, making them competitive to models commonly used in the field.
机译:在此简介中,我们提出了由Medeiros和Veiga提出的神经系数平滑过渡自回归模型(NCSTAR)的新型模型拟合程序。该模型具有统计建立的迭代构建过程,并且可以根据基于模糊规则的系统进行解释。生成模型的可解释性和数学上合理的构建过程是预测模型的两个非常重要的属性。原始NCSTAR使用的模型拟合过程是通过网格搜索过程进行的初始参数估计与传统本地搜索算法的组合。为了获得更准确的模型,我们使用模因算法提出了一种不同的拟合程序。对方法进行了实证评估,并将其应用于源自三个预测竞赛的各种实际时间序列。结果表明,我们可以大大提高模型的准确性,使其与该领域常用模型具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号