首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Hybrid Neural Prediction and Optimized Adjustment for Coke Oven Gas System in Steel Industry
【24h】

Hybrid Neural Prediction and Optimized Adjustment for Coke Oven Gas System in Steel Industry

机译:钢铁行业焦炉煤气系统的混合神经网络预测和优化调整

获取原文
获取原文并翻译 | 示例

摘要

An energy system is the one of most important parts of the steel industry, and its reasonable operation exhibits a critical impact on manufacturing cost, energy security, and natural environment. With respect to the operation optimization problem for coke oven gas, a two-phase data-driven based forecasting and optimized adjusting method is proposed, where a Gaussian process-based echo states network is established to predict the gas real-time flow and the gasholder level in the prediction phase. Then, using the predicted gas flow and gasholder level, we develop a certain heuristic to quantify the user's optimal gas adjustment. The proposed operation measure has been verified to be effective by experimenting with the real-world on-line energy data sets coming from Shanghai Baosteel Corporation, Ltd., China. At present, the scheduling software developed with the proposed model and ensuing algorithms have been applied to the production practice of Baosteel. The application effects indicate that the software system can largely improve the real-time prediction accuracy of the gas units and provide with the optimized gas balance direction for the energy optimization.
机译:能源系统是钢铁行业最重要的部分之一,其合理的运行对制造成本,能源安全和自然环境具有至关重要的影响。针对焦炉煤气的运行优化问题,提出了一种基于两阶段数据驱动的预测和优化调整方法,建立了基于高斯过程的回波状态网络来预测煤气的实时流量和储气罐。预测阶段的水平。然后,使用预测的气体流量和储气罐水平,我们开发出一定的启发式方法来量化用户的最佳气体调节量。通过对来自上海宝钢股份有限公司的真实在线能源数据集进行试验,已验证了所建议的操作措施是有效的。目前,利用提出的模型和后续算法开发的调度软件已应用于宝钢的生产实践中。应用效果表明,该软件系统可以大大提高燃气机组的实时预测精度,并为能源优化提供优化的燃气平衡方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号