首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Regularized Kernel Discriminant Analysis With a Robust Kernel for Face Recognition and Verification
【24h】

Regularized Kernel Discriminant Analysis With a Robust Kernel for Face Recognition and Verification

机译:具有可靠人脸识别和验证功能的正则化核判别分析

获取原文
获取原文并翻译 | 示例

摘要

We propose a robust approach to discriminant kernel-based feature extraction for face recognition and verification. We show, for the first time, how to perform the eigen analysis of the within-class scatter matrix directly in the feature space. This eigen analysis provides the eigenspectrum of its range space and the corresponding eigenvectors as well as the eigenvectors spanning its null space. Based on our analysis, we propose a kernel discriminant analysis (KDA) which combines eigenspectrum regularization with a feature-level scheme (ER-KDA). Finally, we combine the proposed ER-KDA with a nonlinear robust kernel particularly suitable for face recognition/verification applications which require robustness against outliers caused by occlusions and illumination changes. We applied the proposed framework to several popular databases (Yale, AR, XM2VTS) and achieved state-of-the-art performance for most of our experiments.
机译:我们提出了一种可靠的方法来区分基于核的特征以进行人脸识别和验证。我们首次展示了如何直接在特征空间中对类内散布矩阵进行特征分析。本征分析提供了其范围空间的本征谱以及相应的特征向量以及跨越其零空间的特征向量。根据我们的分析,我们提出了一种将特征谱正则化与特征级方案(ER-KDA)相结合的内核判别分析(KDA)。最后,我们将提出的ER-KDA与非线性鲁棒性内核相结合,特别适合于面部识别/验证应用程序,这些应用程序需要鲁棒性以抵抗由遮挡和照明变化引起的异常值。我们将建议的框架应用于几个流行的数据库(Yale,AR,XM2VTS),并且在大多数实验中都达到了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号