首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Synchronization of Markovian Coupled Neural Networks With Nonidentical Node-Delays and Random Coupling Strengths
【24h】

Synchronization of Markovian Coupled Neural Networks With Nonidentical Node-Delays and Random Coupling Strengths

机译:具有不相同节点延迟和随机耦合强度的马尔可夫耦合神经网络的同步

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a general model of coupled neural networks with Markovian jumping and random coupling strengths is introduced. In the process of evolution, the proposed model switches from one mode to another according to a Markovian chain, and all the modes have different constant time-delays. The coupling strengths are characterized by mutually independent random variables. When compared with most of existing dynamical network models which share common time-delay for all modes and have constant coupling strengths, our model is more practical because different chaotic neural network models can have different time-delays and coupling strength of complex networks may randomly vary around a constant due to environmental and artificial factors. By designing a novel Lyapunov functional and using some inequalities and the properties of random variables, we derive several new sufficient synchronization criteria formulated by linear matrix inequalities. The obtained criteria depend on mode-delays and mathematical expectations and variances of the random coupling strengths as well. Numerical examples are given to demonstrate the effectiveness of the theoretical results, meanwhile right-continuous Markovian chain is also presented.
机译:本文介绍了具有马尔可夫跳跃和随机耦合强度的耦合神经网络的一般模型。在演化过程中,所提出的模型根据马尔可夫链从一种模式切换到另一种模式,并且所有模式都有不同的恒定时延。耦合强度的特征在于相互独立的随机变量。当与大多数现有的动态网络模型进行比较时,它们对所有模式都具有相同的时延并且具有恒定的耦合强度,因此我们的模型更为实用,因为不同的混沌神经网络模型可能具有不同的时延,并且复杂网络的耦合强度可能会随机变化由于环境和人为因素而保持恒定。通过设计一种新颖的Lyapunov函数,并利用一些不等式和随机变量的性质,我们得出了一些由线性矩阵不等式制定的新的充分同步准则。所获得的标准还取决于模式延迟和数学期望以及随机耦合强度的方差。数值算例说明了理论结果的有效性,同时给出了右连续马尔可夫链。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号