首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Discriminant Locality Preserving Projections Based on L1-Norm Maximization
【24h】

Discriminant Locality Preserving Projections Based on L1-Norm Maximization

机译:基于L1-范数最大化的判别局部性保留投影

获取原文
获取原文并翻译 | 示例

摘要

Conventional discriminant locality preserving projection (DLPP) is a dimensionality reduction technique based on manifold learning, which has demonstrated good performance in pattern recognition. However, because its objective function is based on the distance criterion using L2-norm, conventional DLPP is not robust to outliers which are present in many applications. This paper proposes an effective and robust DLPP version based on L1-norm maximization, which learns a set of local optimal projection vectors by maximizing the ratio of the L1-norm-based locality preserving between-class dispersion and the L1-norm-based locality preserving within-class dispersion. The proposed method is proven to be feasible and also robust to outliers while overcoming the small sample size problem. The experimental results on artificial datasets, Binary Alphadigits dataset, FERET face dataset and PolyU palmprint dataset have demonstrated the effectiveness of the proposed method.
机译:常规的判别局部性保留投影(DLPP)是一种基于流形学习的降维技术,在模式识别中表现出良好的性能。但是,由于其目标函数基于使用L2范数的距离标准,因此常规DLPP对许多应用中存在的异常值均不具有鲁棒性。本文提出了一种基于L1范数最大化的有效且健壮的DLPP版本,该模型通过最大化保留类间色散和基于L1范数的局部性的基于L1范数的局部性的比率来学习一组局部最优投影向量保持类内分散。所提出的方法被证明是可行的,并且在克服小样本量问题的同时也对异常值具有鲁棒性。在人工数据集,二进制字母数字数据集,FERET人脸数据集和PolyU掌纹数据集上的实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号