首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces
【24h】

Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces

机译:再现内核希尔伯特空间中的显式递归和自适应滤波

获取原文
获取原文并翻译 | 示例

摘要

This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the $gamma$ -filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time series prediction, complex nonlinear system identification, and adaptive antenna array processing demonstrate the potential of the approach for scenarios where recursivity and nonlinearity have to be readily combined.
机译:本简介介绍了一种在再现内核希尔伯特空间中开发递归过滤器的方法。与先前的方法在过滤后的映射样本上利用内核技巧的方法不同,我们在希尔伯特空间中明确定义模型递归性。为此,我们无需点成像或训练数据集即可利用功能分析和点积的递归计算的某些属性。我们在$ gamma $ -filter的特殊情况下说明了该方法的可行性,它是具有受控稳定性和存储深度的无限脉冲响应滤波器。信号模型中出现了不同的算法公式。在混沌和脑电图时间序列预测,复杂的非线性系统识别以及自适应天线阵列处理方面的实验证明了该方法在递归性和非线性必须容易结合的情况下的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号