首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Adaptive Graph Filters in Reproducing Kernel Hilbert Spaces: Design and Performance Analysis
【24h】

Adaptive Graph Filters in Reproducing Kernel Hilbert Spaces: Design and Performance Analysis

机译:复制内核Hilbert空间中的自适应图形过滤器:设计和性能分析

获取原文
获取原文并翻译 | 示例

摘要

This paper develops adaptive graph filters that operate in reproducing kernel Hilbert spaces. We consider both centralized and fully distributed implementations. We first define nonlinear graph filters that operate on graph-shifted versions of the input signal. We then propose a centralized graph kernel least mean squares (GKLMS) algorithm to identify nonlinear graph filters’ model parameters. To reduce the dictionary size of the centralized GKLMS, we apply the principles of coherence check and random Fourier features (RFF). The resulting algorithms have performance close to that of the GKLMS algorithm. Additionally, we leverage the graph structure to derive the distributed graph diffusion KLMS (GDKLMS) algorithms. We show that, unlike the coherence check-based approach, the GDKLMS based on RFF avoids the use of a pre-trained dictionary through its data-independent fixed structure. We conduct a detailed performance study of the proposed RFF-based GDKLMS, and the conditions for its convergence both in mean and mean-squared senses are derived. Extensive numerical simulations show that GKLMS and GDKLMS can successfully identify nonlinear graph filters and adapt to model changes. Furthermore, RFF-based strategies show faster convergence for model identification and exhibit better tracking performance in model-changing scenarios.
机译:本文开发了在再现内核希尔伯特空间中运行的自适应图形过滤器。我们考虑集中式和完全分布式的实现。我们首先定义在输入信号的图形移位版本上运行的非线性图形过滤器。然后,我们提出了一种集中式图形内核最小均方块(GKLMS)算法来识别非线性图形过滤器的模型参数。为了减少集中式GKLM的字典大小,我们应用了一致性检查和随机傅里叶功能(RFF)的原则。得到的算法具有接近GKLMS算法的性能。此外,我们利用图形结构来导出分布式图扩散KLMS(GDKLMS)算法。我们表明,与基于一致性检查的方法不同,基于RFF的GDKLM通过其独立于数据无关的固定结构使用预先培训的字典。我们对所提出的基于RFF的GDKLM进行详细的性能研究,衍生出均值和平均感应感应的条件。广泛的数值模拟表明,GKLMS和GDKLMS可以成功识别非线性图形过滤器并适应模型变化。此外,基于RFF的策略显示了模型识别的更快收敛性,并在模型改变方案中表现出更好的跟踪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号