首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Incipient Interturn Fault Diagnosis in Induction Machines Using an Analytic Wavelet-Based Optimized Bayesian Inference
【24h】

Incipient Interturn Fault Diagnosis in Induction Machines Using an Analytic Wavelet-Based Optimized Bayesian Inference

机译:基于解析小波的优化贝叶斯推理的异步电机初次匝间故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Interturn fault diagnosis of induction machines has been discussed using various neural network-based techniques. The main challenge in such methods is the computational complexity due to the huge size of the network, and in pruning a large number of parameters. In this paper, a nearly shift insensitive complex wavelet-based probabilistic neural network (PNN) model, which has only a single parameter to be optimized, is proposed for interturn fault detection. The algorithm constitutes two parts and runs in an iterative way. In the first part, the PNN structure determination has been discussed, which finds out the optimum size of the network using an orthogonal least squares regression algorithm, thereby reducing its size. In the second part, a Bayesian classifier fusion has been recommended as an effective solution for deciding the machine condition. The testing accuracy, sensitivity, and specificity values are highest for the product rule-based fusion scheme, which is obtained under load, supply, and frequency variations. The point of overfitting of PNN is determined, which reduces the size, without compromising the performance. Moreover, a comparative evaluation with traditional discrete wavelet transform-based method is demonstrated for performance evaluation and to appreciate the obtained results.
机译:已经使用各种基于神经网络的技术讨论了感应电机的匝间故障诊断。这种方法的主要挑战是由于网络规模大以及修剪大量参数导致的计算复杂性。在本文中,提出了一种仅对单个参数进行优化的近位移不敏感,基于复杂小波的概率神经网络(PNN)模型,用于匝间故障检测。该算法分为两部分,以迭代方式运行。在第一部分中,已经讨论了PNN结构确定,该确定使用正交最小二乘回归算法找出网络的最佳大小,从而减小其大小。在第二部分中,建议使用贝叶斯分类器融合作为确定机器状态的有效解决方案。基于产品规则的融合方案的测试精度,灵敏度和特异性值最高,该方案是在负载,电源和频率变化下获得的。确定了PNN的过拟合点,这会减小尺寸,而不会影响性能。此外,演示了与传统的基于离散小波变换的方法进行比较评估,以进行性能评估并欣赏获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号