首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Attractivity Analysis of Memristor-Based Cellular Neural Networks With Time-Varying Delays
【24h】

Attractivity Analysis of Memristor-Based Cellular Neural Networks With Time-Varying Delays

机译:具有时变时滞的忆阻器细胞神经网络的吸引力分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents new theoretical results on the invariance and attractivity of memristor-based cellular neural networks (MCNNs) with time-varying delays. First, sufficient conditions to assure the boundedness and global attractivity of the networks are derived. Using state-space decomposition and some analytic techniques, it is shown that the number of equilibria located in the saturation regions of the piecewise-linear activation functions of an $n$-neuron MCNN with time-varying delays increases significantly from $2^{n}$ to $2^{2n^{2}+n}~(2^{2n^{2}}~{rm times})$ compared with that without a memristor. In addition, sufficient conditions for the invariance and local or global attractivity of equilibria or attractive sets in any designated region are derived. Finally, two illustrative examples are given to elaborate the characteristics of the results in detail.
机译:本文提出了具有时变时滞的基于忆阻器的细胞神经网络(MCNN)的不变性和吸引性的新理论结果。首先,推导了确保网络有界和全局吸引性的充分条件。使用状态空间分解和一些分析技术,表明具有时变延迟的$ n $-神经元MCNN分段线性激活函数的饱和区域中的平衡点数量从$ 2 ^ {n } $到$ 2 ^ {2n ^ {2} + n}〜(2 ^ {2n ^ {2}}〜{rm times})$相比,没有忆阻器。另外,为在任何指定区域中的平衡或吸引集的不变性和局部或全局吸引性提供了充分条件。最后,给出两个说明性示例以详细阐述结果的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号