首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Local Stability Analysis of Discrete-Time, Continuous-State, Complex-Valued Recurrent Neural Networks With Inner State Feedback
【24h】

Local Stability Analysis of Discrete-Time, Continuous-State, Complex-Valued Recurrent Neural Networks With Inner State Feedback

机译:具有内部状态反馈的离散,连续状态,复值递归神经网络的局部稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

Recurrent neural networks (RNNs) are well known for their capability to minimize suitable cost functions without the need for a training phase. This is possible because they can be Lyapunov stable. Although the global stability analysis has attracted a lot of interest, local stability is desirable for specific applications. In this brief, we investigate the local asymptotical stability of two classes of discrete-time, continuous-state, complex-valued RNNs with parallel update and inner state feedback. We show that many already known results are special cases of the results obtained here. We also generalize some known results from the real-valued case to the complex-valued one. Finally, we investigate the stability in the presence of time-variant activation functions. Complex-valued activation functions in this brief are separable with respect to the real and imaginary parts.
机译:递归神经网络(RNN)无需训练即可将合适的成本函数降至最低的能力而闻名。这是可能的,因为它们可以是Lyapunov稳定的。尽管全局稳定性分析吸引了很多兴趣,但是局部稳定性对于特定的应用是理想的。在本文中,我们研究了两类具有并行更新和内部状态反馈的离散时间,连续状态,复值RNN的局部渐近稳定性。我们表明,许多已知结果是此处获得的结果的特例。我们还将一些已知结果从实值情况推广到复值情况。最后,我们研究了存在时变激活函数的稳定性。在本摘要中,复数值激活函数相对于实部和虚部是可分离的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号