首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >An Interval Type-2 Neural Fuzzy Chip With On-Chip Incremental Learning Ability for Time-Varying Data Sequence Prediction and System Control
【24h】

An Interval Type-2 Neural Fuzzy Chip With On-Chip Incremental Learning Ability for Time-Varying Data Sequence Prediction and System Control

机译:具有片内增量学习能力的区间2型神经模糊芯片,用于时变数据序列预测和系统控制

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new circuit to implement a Mamdani-type interval type-2 neural fuzzy chip with on-chip incremental learning ability (IT2NFC-OL) for applications in changing environments. Traditional interval type-2 fuzzy systems use an iterative procedure to find the system outputs, which is computationally expensive, especially for hardware implementation. To address this problem, the IT2NFC-OL uses a simplified type reduction operation to reduce the hardware implementation cost without degrading the learning performance. The software-implemented IT2NFC-OL is characterized by online structure learning and parameter learning using a gradient descent algorithm. The learned fuzzy model is then implemented in a field-programmable gate array (FPGA) chip. The FPGA-implemented IT2NFC-OL performs not only fuzzy inference but also online consequent parameter learning for applications in changing environments. Novel circuits for the computation of system outputs and the update of interval consequent values are proposed. The learning performance of the software-implemented IT2NFC-OL and the on-chip learning ability are verified with applications to time-varying data sequence prediction and system control problems and by comparisons with different software-implemented type-1 and type-2 neural fuzzy systems and interval type-2 fuzzy chips.
机译:本文提出了一种新电路,用于实现具有片上增量学习能力的Mamdani型间隔2型神经模糊芯片(IT2NFC-OL),用于变化环境中的应用。传统的间隔2型模糊系统使用迭代过程来查找系统输出,这在计算上非常昂贵,尤其是对于硬件实现而言。为了解决此问题,IT2NFC-OL使用简化的类型减少操作来减少硬件实现成本,而不会降低学习性能。软件实现的IT2NFC-OL的特点是使用梯度下降算法进行在线结构学习和参数学习。然后在现场可编程门阵列(FPGA)芯片中实现学习的模糊模型。由FPGA实现的IT2NFC-OL不仅可以执行模糊推理,还可以在不断变化的环境中进行在线后续参数学习。提出了用于计算系统输出和更新间隔结果值的新型电路。通过将软件实现的IT2NFC-OL的学习性能和片上学习能力应用于时变数据序列预测和系统控制问题,并与不同的软件实现的1型和2型神经模糊算法进行比较,验证了该软件的学习性能和片上学习能力。系统和区间2型模糊筹码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号