首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Stability Criteria for Recurrent Neural Networks With Time-Varying Delay Based on Secondary Delay Partitioning Method
【24h】

Stability Criteria for Recurrent Neural Networks With Time-Varying Delay Based on Secondary Delay Partitioning Method

机译:基于二次时滞划分方法的时变时滞递归神经网络的稳定性判据

获取原文
获取原文并翻译 | 示例

摘要

A secondary delay partitioning method is proposed to study the stability problem for a class of recurrent neural networks (RNNs) with time-varying delay. The total interval of the time-varying delay is first divided into two parts, and then each part is further divided into several subintervals. To deal with the state variables associated with these subintervals, an extended reciprocal convex combination approach and a double integral term with variable upper and lower limits of integral as a Lyapunov functional are proposed, which help to obtain the stability criterion. The main feature of the proposed result is more effective for the RNNs with fast time-varying delay. A numerical example is used to show the effectiveness of the proposed stability result.
机译:为了研究一类具有时变时滞的递归神经网络(RNN)的稳定性问题,提出了一种二次时延划分方法。时变延迟的总间隔首先分为两部分,然后将每个部分进一步分为几个子间隔。为了处理与这些子区间相关的状态变量,提出了一种扩展的倒数凸组合方法和一个具有可变上限和下限的双积分项作为Lyapunov泛函,这有助于获得稳定性判据。提出的结果的主要特征对于具有快速时变延迟的RNN更有效。数值例子表明了所提出的稳定性结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号