首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Memristor-Based Cellular Nonlinear/Neural Network: Design, Analysis, and Applications
【24h】

Memristor-Based Cellular Nonlinear/Neural Network: Design, Analysis, and Applications

机译:基于忆阻器的细胞非线性/神经网络:设计,分析和应用

获取原文
获取原文并翻译 | 示例

摘要

Cellular nonlineareural network (CNN) has been recognized as a powerful massively parallel architecture capable of solving complex engineering problems by performing trillions of analog operations per second. The memristor was theoretically predicted in the late seventies, but it garnered nascent research interest due to the recent much-acclaimed discovery of nanocrossbar memories by engineers at the Hewlett-Packard Laboratory. The memristor is expected to be co-integrated with nanoscale CMOS technology to revolutionize conventional von Neumann as well as neuromorphic computing. In this paper, a compact CNN model based on memristors is presented along with its performance analysis and applications. In the new CNN design, the memristor bridge circuit acts as the synaptic circuit element and substitutes the complex multiplication circuit used in traditional CNN architectures. In addition, the negative differential resistance and nonlinear current–voltage characteristics of the memristor have been leveraged to replace the linear resistor in conventional CNNs. The proposed CNN design has several merits, for example, high density, nonvolatility, and programmability of synaptic weights. The proposed memristor-based CNN design operations for implementing several image processing functions are illustrated through simulation and contrasted with conventional CNNs. Monte-Carlo simulation has been used to demonstrate the behavior of the proposed CNN due to the variations in memristor synaptic weights.
机译:蜂窝非线性/神经网络(CNN)被公认为是强大的大规模并行体系结构,能够通过每秒执行数万亿次模拟操作来解决复杂的工程问题。从理论上讲,忆阻器是在70年代末期预测的,但是由于惠普实验室的工程师最近广受赞誉的纳米交叉开关存储器的发现,它引起了新的研究兴趣。忆阻器有望与纳米级CMOS技术集成在一起,从而彻底改变传统的冯·诺依曼(von Neumann)以及神经形态计算。本文提出了一种基于忆阻器的紧凑型CNN模型及其性能分析和应用。在新的CNN设计中,忆阻器电桥电路充当突触电路元件,并替代了传统CNN架构中使用的复杂乘法电路。此外,忆阻器的负差分电阻和非线性电流-电压特性已被用来代替传统CNN中的线性电阻。所提出的CNN设计具有几个优点,例如,高密度,非易失性和突触权重的可编程性。拟议的基于忆阻器的CNN设计操作用于实现多种图像处理功能,通过仿真进行了说明,并与常规CNN进行了对比。由于忆阻器突触权重的变化,蒙特卡洛模拟已被用来证明所提出的CNN的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号