首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on > $L_{1}$ -Norm Low-Rank Matrix Factorization by Variational Bayesian Method
【24h】

$L_{1}$ -Norm Low-Rank Matrix Factorization by Variational Bayesian Method

机译: $ L_ {1} $ -范数低秩矩阵的变分贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

The -norm low-rank matrix factorization (LRMF) has been attracting much attention due to its wide applications to computer vision and pattern recognition. In this paper, we construct a new hierarchical Bayesian generative model for the -norm LRMF problem and design a mean-field variational method to automatically infer all the parameters involved in the model by closed-form equations. The variational Bayesian inference in the proposed method can be understood as solving a weighted LRMF problem with different weights on matrix elements based on their significance and with -regularization penalties on parameters. Throughout the inference process of our method, the weights imposed on the matrix elements can be adaptively fitted so that the adverse influence of noises and outliers embedded in data can be largely suppressed, and the parameters can be appropriately regularized so that the generalization capability of the problem can be statistically guaranteed. The robustness and the efficiency of the proposed method are substantiated by a series of synthetic and real data experiments, as compared with the state-of-the-art -norm LRMF methods. Especially, attributed to the intrinsic generalization capability of the Bayesian methodology, our method can always predict better on the unobserved ground truth data than existing methods.
机译:-范数低秩矩阵分解(LRMF)由于在计算机视觉和模式识别中的广泛应用而备受关注。在本文中,我们针对-norm LRMF问题构造了一个新的分层贝叶斯生成模型,并设计了一种均值场变分方法,以通过封闭形式的方程式自动推断模型中涉及的所有参数。提出的方法中的变分贝叶斯推理可以理解为基于矩阵元素的重要性和对参数进行正则化惩罚的矩阵元素具有不同权重的加权LRMF问题。在我们方法的整个推理过程中,可以自适应地拟合施加在矩阵元素上的权重,从而可以大大抑制噪声和数据中嵌入的异常值的不利影响,并且可以适当地对参数进行正则化,以便对问题可以得到统计保证。与最新的标准LRMF方法相比,该方法的鲁棒性和效率通过一系列综合和真实的数据实验得到证实。特别是,由于贝叶斯方法具有内在的泛化能力,我们的方法在未观察到的地面真实数据上总是比现有方法更好地预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号