首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Assessing the Influence of an Individual Event in Complex Fault Spreading Network Based on Dynamic Uncertain Causality Graph
【24h】

Assessing the Influence of an Individual Event in Complex Fault Spreading Network Based on Dynamic Uncertain Causality Graph

机译:基于动态不确定因果图的复杂故障传播网络中单个事件的影响评估

获取原文
获取原文并翻译 | 示例

摘要

Identifying the pivotal causes and highly influential spreaders in fault propagation processes is crucial for improving the maintenance decision making for complex systems under abnormal and emergency situations. A dynamic uncertain causality graph-based method is introduced in this paper to explicitly model the uncertain causalities among system components, identify fault conditions, locate the fault origins, and predict the spreading tendency by means of probabilistic reasoning. A new algorithm is proposed to assess the impacts of an individual event by investigating the corresponding node’s time-variant betweenness centrality and the strength of global causal influence in the fault propagation network. The algorithm does not depend on the whole original and static network but on the real-time spreading behaviors and dynamics, which makes the algorithm to be specifically targeted and more efficient. Experiments on both simulated networks and real-world systems demonstrate the accuracy, effectiveness, and comprehensibility of the proposed method for the fault management of power grids and other complex networked systems.
机译:确定故障传播过程中的关键原因和影响力很大的散布器对于改进异常和紧急情况下复杂系统的维护决策至关重要。本文提出了一种基于动态不确定因果图的方法,可以对系统组件之间的不确定因果关系进行显式建模,确定故障条件,定位故障根源,并通过概率推理预测分布趋势。提出了一种新算法,通过调查相应节点的时变中间性中心和故障传播网络中全局因果影响的强度来评估单个事件的影响。该算法不依赖于整个原始网络和静态网络,而是依赖于实时传播行为和动态特性,这使得该算法具有针对性,并且效率更高。在仿真网络和实际系统上进行的实验证明了所提出的方法用于电网和其他复杂联网系统的故障管理的准确性,有效性和可理解性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号