首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Neural Network-Based Event-Triggered Control of Single-Input Single-Output Nonlinear Discrete-Time Systems
【24h】

Adaptive Neural Network-Based Event-Triggered Control of Single-Input Single-Output Nonlinear Discrete-Time Systems

机译:基于自适应神经网络的单输入单输出非线性离散时间事件触发控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.
机译:本文提出了一种新的自适应神经网络(NN)控制的事件采样的NN输入下的单输入和单输出不确定非线性离散时间系统。在此控制方案中,将发送反馈信号,并在事件采样时刻以非周期性的方式调整NN权重。用事件采样输入检查NN逼近属性后,由线性参数化NN组成的自适应状态估计器(SE)用于在事件采样上下文中近似未知系统动态。 SE被视为模型,在任何两个事件期间,其近似动态和状态向量都用于事件触发的控制器设计。自适应事件触发条件是通过使用估计的NN权重和死区算子来确定事件采样时刻而得出的。这种情况既有利于NN逼近,又减少了反馈信号的传输。通过Lyapunov方法证明了NN权重估计误差和系统状态向量的最终有界性。不出所料,在最初的在线学习阶段,事件被更频繁地观察。随着时间的推移,随着NN权重的收敛,事件间时间增加,从而减少了触发事件的数量。通过仿真结果说明了这些主张。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号