首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Learning Subspace-Based RBFNN Using Coevolutionary Algorithm for Complex Classification Tasks
【24h】

Learning Subspace-Based RBFNN Using Coevolutionary Algorithm for Complex Classification Tasks

机译:使用协进化算法学习基于子空间的RBFNN进行复杂的分类任务

获取原文
获取原文并翻译 | 示例

摘要

Many real-world classification problems are characterized by samples of a complex distribution in the input space. The classification accuracy is determined by intrinsic properties of all samples in subspaces of features. This paper proposes a novel algorithm for the construction of radial basis function neural network (RBFNN) classifier based on subspace learning. In this paper, feature subspaces are obtained for every hidden node of the RBFNN during the learning process. The connection weights between the input layer and the hidden layer are adjusted to produce various subspaces with dominative features for different hidden nodes. The network structure and dominative features are encoded in two subpopulations that are cooperatively coevolved using the coevolutionary algorithm to achieve a better global optimality for the estimated RBFNN. Experimental results illustrate that the proposed algorithm is able to obtain RBFNN models with both better classification accuracy and simpler network structure when compared with other learning algorithms. Thus, the proposed model provides a more flexible and efficient approach to complex classification tasks by employing the local characteristics of samples in subspaces.
机译:许多现实世界中的分类问题的特征在于输入空间中复杂分布的样本。分类精度由特征子空间中所有样本的固有属性确定。提出了一种基于子空间学习的径向基函数神经网络分类器构造算法。在本文中,在学习过程中为RBFNN的每个隐藏节点获取了特征子空间。调整输入层和隐藏层之间的连接权重,以针对不同的隐藏节点生成具有主导特征的各种子空间。网络结构和支配性特征被编码在两个子群体中,这两个子群体使用协同进化算法进行协同协同进化,从而为估计的RBFNN获得更好的全局最优性。实验结果表明,与其他学习算法相比,该算法能够获得分类精度更高,网络结构更简单的RBFNN模型。因此,所提出的模型通过利用子空间中样本的局部特征,为复杂的分类任务提供了一种更灵活有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号