首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >MR-NTD: Manifold Regularization Nonnegative Tucker Decomposition for Tensor Data Dimension Reduction and Representation
【24h】

MR-NTD: Manifold Regularization Nonnegative Tucker Decomposition for Tensor Data Dimension Reduction and Representation

机译:MR-NTD:用于张量数据维数减少和表示的流形正则化非负塔克分解

获取原文
获取原文并翻译 | 示例

摘要

With the advancement of data acquisition techniques, tensor (multidimensional data) objects are increasingly accumulated and generated, for example, multichannel electroencephalographies, multiview images, and videos. In these applications, the tensor objects are usually nonnegative, since the physical signals are recorded. As the dimensionality of tensor objects is often very high, a dimension reduction technique becomes an important research topic of tensor data. From the perspective of geometry, high-dimensional objects often reside in a low-dimensional submanifold of the ambient space. In this paper, we propose a new approach to perform the dimension reduction for nonnegative tensor objects. Our idea is to use nonnegative Tucker decomposition (NTD) to obtain a set of core tensors of smaller sizes by finding a common set of projection matrices for tensor objects. To preserve geometric information in tensor data, we employ a manifold regularization term for the core tensors constructed in the Tucker decomposition. An algorithm called manifold regularization NTD (MR-NTD) is developed to solve the common projection matrices and core tensors in an alternating least squares manner. The convergence of the proposed algorithm is shown, and the computational complexity of the proposed method scales linearly with respect to the number of tensor objects and the size of the tensor objects, respectively. These theoretical results show that the proposed algorithm can be efficient. Extensive experimental results have been provided to further demonstrate the effectiveness and efficiency of the proposed MR-NTD algorithm.
机译:随着数据采集技术的进步,张量(多维数据)对象越来越多地被累积和生成,例如,多通道脑电图,多视图图像和视频。在这些应用中,张量对象通常是非负的,因为会记录物理信号。由于张量对象的维数通常很高,因此降维技术成为张量数据的重要研究课题。从几何学的角度来看,高维对象通常驻留在环境空间的低维子流形中。在本文中,我们提出了一种新的方法来执行非负张量对象的降维。我们的想法是使用非负Tucker分解(NTD)通过找到一组通用的张量对象投影矩阵来获得一组较小尺寸的核心张量。为了保留张量数据中的几何信息,我们对Tucker分解中构造的核心张量采用流形正则化项。开发了一种称为流形正则化NTD(MR-NTD)的算法,以交替的最小二乘法求解公共投影矩阵和核心张量。示出了所提出算法的收敛性,并且所提出方法的计算复杂度分别关于张量对象的数量和张量对象的大小线性地缩放。这些理论结果表明,该算法是有效的。提供了广泛的实验结果,以进一步证明所提出的MR-NTD算法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号