首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Mapping Temporal Variables Into the NeuCube for Improved Pattern Recognition, Predictive Modeling, and Understanding of Stream Data
【24h】

Mapping Temporal Variables Into the NeuCube for Improved Pattern Recognition, Predictive Modeling, and Understanding of Stream Data

机译:将时间变量映射到NeuCube中,以改进模式识别,预测建模和理解流数据

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new method for an optimized mapping of temporal variables, describing a temporal stream data, into the recently proposed NeuCube spiking neural network (SNN) architecture. This optimized mapping extends the use of the NeuCube, which was initially designed for spatiotemporal brain data, to work on arbitrary stream data and to achieve a better accuracy of temporal pattern recognition, a better and earlier event prediction, and a better understanding of complex temporal stream data through visualization of the NeuCube connectivity. The effect of the new mapping is demonstrated on three benchmark problems. The first one is the early prediction of patient sleep stage event from temporal physiological data. The second one is the pattern recognition of dynamic temporal patterns of traffic in the Bay Area of California and the last one is the Challenge 2012 contest data set. In all the cases, the use of the proposed mapping leads to an improved accuracy of pattern recognition and event prediction and a better understanding of the data when compared with traditional machine learning techniques or SNN reservoirs with an arbitrary mapping of the variables.
机译:本文提出了一种新方法,用于将描述时间流数据的时间变量优化映射到最近提出的NeuCube尖峰神经网络(SNN)体系结构中。这种优化的映射扩展了最初用于时空大脑数据的NeuCube的使用,以处理任意流数据并获得更好的时间模式识别准确度,更好和更早的事件预测以及对复杂时间的更好理解通过可视化NeuCube连接来传输数据。在三个基准问题上证明了新映射的效果。第一个是根据时态生理数据对患者睡眠阶段事件的早期预测。第二个是加利福尼亚湾区交通动态时间模式的模式识别,最后一个是Challenge 2012竞赛数据集。在所有情况下,与传统的机器学习技术或具有任意变量映射的SNN存储库相比,使用建议的映射都可以提高模式识别和事件预测的准确性,并更好地理解数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号