首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Mapping, Learning, Visualization, Classification, and Understanding of fMRI Data in the NeuCube Evolving Spatiotemporal Data Machine of Spiking Neural Networks
【24h】

Mapping, Learning, Visualization, Classification, and Understanding of fMRI Data in the NeuCube Evolving Spatiotemporal Data Machine of Spiking Neural Networks

机译:尖峰神经网络的NeuCube时空数据机中fMRI数据的映射,学习,可视化,分类和理解

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new methodology for dynamic learning, visualization, and classification of functional magnetic resonance imaging (fMRI) as spatiotemporal brain data. The method is based on an evolving spatiotemporal data machine of evolving spiking neural networks (SNNs) exemplified by the NeuCube architecture [1]. The method consists of several steps: mapping spatial coordinates of fMRI data into a 3-D SNN cube (SNNc) that represents a brain template; input data transformation into trains of spikes; deep, unsupervised learning in the 3-D SNNc of spatiotemporal patterns from data; supervised learning in an evolving SNN classifier; parameter optimization; and 3-D visualization and model interpretation. Two benchmark case study problems and data are used to illustrate the proposed methodology - fMRI data collected from subjects when reading affirmative or negative sentences and another one - on reading a sentence or seeing a picture. The learned connections in the SNNc represent dynamic spatiotemporal relationships derived from the fMRI data. They can reveal new information about the brain functions under different conditions. The proposed methodology allows for the first time to analyze dynamic functional and structural connectivity of a learned SNN model from fMRI data. This can be used for a better understanding of brain activities and also for online generation of appropriate neurofeedback to subjects for improved brain functions. For example, in this paper, tracing the 3-D SNN model connectivity enabled us for the first time to capture prominent brain functional pathways evoked in language comprehension. We found stronger spatiotemporal interaction between left dorsolateral prefrontal cortex and left temporal while reading a negated sentence. This observation is obviously distinguishable from the patterns generated by either reading affirmative sentences or seeing pictures. The proposed NeuCube-based methodology offers also a superior classification accuracy when compared with traditional AI and statistical methods. The created NeuCube-based models of fMRI data are directly and efficiently implementable on high performance and low energy consumption neuromorphic platforms for real-time applications.
机译:本文介绍了一种动态学习,可视化和功能磁共振成像(fMRI)分类为时空大脑数据的新方法。该方法基于以NeuCube架构为例的演化尖峰神经网络(SNN)的演化时空数据机。该方法包括几个步骤:将fMRI数据的空间坐标映射到代表大脑模板的3-D SNN立方体(SNNc)中;输入数据转换成峰值的序列;在3D SNNc中从数据进行时空模式的深入,无监督的学习;不断发展的SNN分类器中的监督学习;参数优化;和3D可视化和模型解释。使用两个基准案例研究问题和数据来说明所提出的方法-在阅读肯定或否定句子时从受试者收集的fMRI数据,以及在阅读句子或看图片时从受试者收集的fMRI数据。 SNNc中的学习连接表示从fMRI数据得出的动态时空关系。他们可以揭示不同条件下大脑功能的新信息。所提出的方法首次允许从fMRI数据分析学习的SNN模型的动态功能和结构连通性。这可以用于更好地了解大脑活动,也可以在线生成适当的神经反馈给受试者以改善大脑功能。例如,在本文中,跟踪3-D SNN模型的连通性使我们首次捕获了语言理解中引起的突出的大脑功能途径。我们发现,在阅读否定句子时,左背外侧前额叶皮层和左颞叶之间的时空相互作用更强。这种观察显然与阅读肯定句或看图片所产生的模式是有区别的。与传统的AI和统计方法相比,基于NeuCube的方法论还提供了更高的分类精度。创建的基于NeuCube的fMRI数据模型可在高性能,低能耗的神经形态平台上直接有效地实现,以进行实时应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号