首页> 美国卫生研究院文献>Frontiers in Neuroscience >Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimers Disease
【2h】

Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimers Disease

机译:结合fMRI数据超网络在阿尔茨海默氏病中的多种特征的机器学习分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrushippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance.
机译:探索各个大脑区域之间的功能相互作用有助于理解神经系统疾病的病理基础。脑网络提供了这些功能相互作用的重要代表,因此被广泛应用于神经退行性疾病的诊断和分类。许多精神障碍涉及作为主要症状的认知能力的急剧下降,这可能是由于几个大脑区域之间异常的连接方式引起的。然而,通常基于不同大脑区域之间的成对相关性来构造常规功能连接网络。这种方法忽略了高阶关系,并且不能有效地表征许多大脑区域共同协作的高阶相互作用。最近的神经科学研究表明,大脑区域之间的高级关系对于大脑网络分析很重要。已经提出了可以有效表示大脑区域之间相互作用的超网络。但是,该方法提取大脑区域的局部特征作为特征,但是忽略了全局拓扑信息,这影响了网络拓扑的评估并降低了分类器的性能。可以通过基于子图特征的方法来补偿此问题,但对单个大脑区域的变化不敏感。考虑到这两种特征提取方法均会导致信息丢失,我们提出了一种新颖的机器学习分类方法,该方法结合了基于功能性磁共振成像的阿尔茨海默氏病的超网络的多个特征。该方法结合了大脑区域特征和子图特征,然后使用多核SVM进行分类。这不仅保留了全局拓扑信息,还保留了单个大脑区域中变化的敏感性。为了证明所提出的方法,选择了28名正常对照受试者和38名阿尔茨海默氏病患者参加实验。提出的方法实现了令人满意的分类精度,平均为91.60%。异常的大脑区域包括双侧前神经突,右海马旁回/海马,右后扣带回以及其他在阿尔茨海默氏病中重要的区域。结合阿尔茨海默氏病功能性磁共振成像数据超网络的多个特征的机器学习分类可获得更好的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号