首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Exponential Stability of Complex-Valued Memristive Recurrent Neural Networks
【24h】

Exponential Stability of Complex-Valued Memristive Recurrent Neural Networks

机译:复值忆阻递归神经网络的指数稳定性

获取原文
获取原文并翻译 | 示例

摘要

In this brief, we establish a novel complex-valued memristive recurrent neural network (CVMRNN) to study its stability. As a generalization of real-valued memristive neural networks, CVMRNN can be separated into real and imaginary parts. By means of M -matrix and Lyapunov function, the existence, uniqueness, and exponential stability of the equilibrium point for CVMRNNs are investigated, and sufficient conditions are presented. Finally, the effectiveness of obtained results is illustrated by two numerical examples.
机译:在本文中,我们建立了一个新颖的复值忆阻递归神经网络(CVMRNN),以研究其稳定性。作为实值忆阻神经网络的一般化,CVMRNN可以分为实部和虚部。通过M矩阵和Lyapunov函数,研究了CVMRNNs平衡点的存在性,唯一性和指数稳定性,并给出了充分的条件。最后,通过两个数值例子说明了所得结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号