首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation
【24h】

Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation

机译:基于Aspen HYSYS仿真的基于双RBFNN的无模型自适应控制

获取原文
获取原文并翻译 | 示例

摘要

In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.
机译:在本文中,我们为一类离散时间非线性系统提出了一种新的具有双径向基函数神经网络(RBFNN)的无数据驱动的无模型自适应控制(MFAC)方法。主要的新颖之处在于,它通过直接使用I / O数据,而不是使用第一原理模型或离线识别的工厂模型,为控制器结构提供了一种系统的设计方法。控制器的结构由理想非线性控制器的等效动态线性化表示确定,控制器参数由从工厂的I / O数据中提取的伪梯度信息进行调整,该伪梯度信息可以处理未知的非线性系统。严格的理论分析可确保RBFNN的闭环控制系统的稳定性和训练过程的稳定性。同时,通过数值算例和粗苯乙烯生产过程中蒸馏塔的Aspen HYSYS模拟,进一步证明了该方法的有效性和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号