首页> 外文OA文献 >A Simulation Study on Model Predictive Control Application for Depropanizer Using Aspen Hysys
【2h】

A Simulation Study on Model Predictive Control Application for Depropanizer Using Aspen Hysys

机译:基于Aspen Hysys的脱丙烷器模型预测控制应用的仿真研究。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A model predictive control strategy was proposed for control problem in a distillation column. The aim was to demonstrate process models of depropanizer from step test data and to design an advanced process control (APC) scheme to replace conventional controller for distillation column. The simulation study was conducted using ASPEN HYSYS. In order to achieve the objectives, data was collected from process of depropanizer that used proportional integral derivative controller (PID) controller and the step test was run. Model predictive control (MPC) action was calculated using system identification techniques in MATLAB and process model was obtained. MPC was applied and performance of PID and MPC was compared using set point tracking.The results confirmed the potentials of the proposed strategy. Process model 2x2 constrained MPC was develop in this study. Based on the comparison of the two control methods, results presented prove that MPC can replace conventional controller, PID controller for a distillation column control. MPC also shows greater performances than PID in terms of set point tracking. Hence, MPC controller offers better control performances than PID controller, especially in multivariable processes.
机译:针对蒸馏塔的控制问题,提出了一种模型预测控制策略。目的是通过分步测试数据演示脱丙烷器的工艺模型,并设计一种先进的工艺控制(APC)方案来代替传统的蒸馏塔控制器。仿真研究是使用ASPEN HYSYS进行的。为了达到目标,从使用比例积分微分控制器(PID)控制器的脱丙烷过程中收集了数据,并进行了阶跃测试。使用MATLAB中的系统识别技术计算模型预测控制(MPC)行为,并获得过程模型。应用MPC并通过设定点跟踪比较PID和MPC的性能,结果证实了该策略的潜力。在这项研究中开发了过程模型2x2约束的MPC。通过对两种控制方法的比较,结果表明,MPC可以代替传统的控制器,PID控制器进行蒸馏塔控制。在设定点跟踪方面,MPC还显示出比PID更好的性能。因此,MPC控制器比PID控制器具有更好的控制性能,尤其是在多变量过程中。

著录项

  • 作者

    Farah Fatihah Mohd Azhari;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号